Molecular Medicine Israel

Brain Activity Breaks DNA

Researchers find that temporary double-stranded DNA breaks commonly result from normal neuron activation—but expression of an Alzheimer’s-linked protein increases the damage

Double-stranded breaks in DNA—generally thought to be a severe form of damage—may simply be all in a day’s work for neurons, according to research published today (March 24) in Nature Neuroscience. Scientists studying mice reported that normal neuronal activation stimulated by exposure to new environments can cause temporary DNA breaks—suggesting that transient damage may be involved in learning and memory. Additionally, expressing a protein linked to Alzheimer’s disease exacerbates the damage, but blocking neuron activation can keep DNA breaks at a normal level, hinting at possible therapeutic strategy to prevent cognitive decline.

“It’s breathtaking work,” said Karl Herrup, a neurogeneticist at Rutgers University who was not involved in the research. DNA damage can be very dangerous to neurons, which aren’t readily replaced, so it seems likely that the cells must be getting something “worthwhile” from the breaks, said Herrup.

Sign up for our Newsletter