Molecular Medicine Israel

Can Preventing Seizures Alter the Course of Autism?

Experimental surgeries to prevent seizures may help scientists understand the link between autism and epilepsy.

Delicate lines dance across a screen mounted on the wall of the operating room. Their peaks and valleys become pronounced, suddenly flatten into a straight line—and then return, stronger than before.
These digital traces represent the buzz of neurons in 12-year-old Kevin Lightner, read by two thin electrodes that surgeons have inserted deep into his brain. Kevin, who has autism and has had seizures since he was 8 years old, lies uncharacteristically still in the center of the room, draped under a blue sheet, his tiger-print pajamas neatly folded on a nearby shelf.
What’s happening in this room may be the last chance to bring Kevin’s seizures under control.
An hour and a half ago, neurosurgeon Saadi Ghatan removed a roughly 2-inch by 1-inch piece of the top of Kevin’s skull. He replaced it with a rectangular metal device, carefully screwed into the newly exposed edges of bone. The implant, a “responsive neurostimulation device,” is now transmitting signals from the electrodes planted in Kevin’s thalamus. The surgeons’ hope is that the device will learn to recognize what kind of brain activity precedes Kevin’s seizures and discharge electrical pulses to prevent them—like a “defibrillator for the brain,” as Ghatan puts it. If it works, it could save Kevin’s life.
Ghatan projects the device’s readout to the screen by gently placing a black wand over the exposed metal in Kevin’s skull. The signal on the screen is surprisingly strong, given that it stems from the thalamus, a brain region that reveals its activity only weakly, if at all—and so is rarely the choice for monitoring seizures.
The rapid spiking with pauses in between echoes electroencephalograph readings the team took of Kevin’s brain before surgery. The pattern is “classic Kevin,” says his neurologist, Madeline Fields, who has donned scrubs for the first time in more than a year to get this glimpse into his brain.
Kevin was an infant when his mother, Lisa Lightner, learned he has dup15q syndrome, a genetic condition that causes epilepsy, intellectual disability, and autism. Multiple types and combinations of drugs—what Lightner calls “the medication dance”—did nothing to mitigate Kevin’s seizures. Looming in Lightner’s mind were five terrifying letters: SUDEP, or sudden unexpected death in epilepsy, a constant threat to her child’s life….

Sign up for our Newsletter